Featured Sustainable Story of the Week : D2O Learning – A Platform to help students & professionals to grow and excel in field of Sustainable Buildings

Recently, Bill Gates warns climate change could be worse than the coronavirus. By 2060, climate change could be just as deadly as COVID-19. He emphasized on innovation and awareness for reducing our carbon footprints. We at D2O Learning are working to spread the knowledge and upskill the Youth to be ready for the better tomorrow.

“We believe that education is not just limited to the classroom. Anyone can learn new skills from anywhere.  By connecting students & professionals across the globe to the best instructors, D2O learning is supporting learners to meet their career goals right from entering to the job market and changing fields to seeking promotion and exploring for Green Jobs in Sustainability Industry and work towards reducing their carbon footprint”, says D2O Learning Co-founder Mr. Anuj Gupta.

How was it started?

One of the co-founders of D2O Learning is working in Building Engineering Services since 2015. He has worked on various projects and assignments of Green Building Certifications, Climate Action, Various types of building simulations, audits, and many others. Through the market research, it has been found that many people would like to work in this domain but they are unaware about the work and what to select in their career. So, during the pandemic, he started D2O Learning with the objective of dissemination of knowledge and upskill the students & professionals in this sustainability field.

How is it going?

Team D2O Learning has developed various courses like LEED Green Associate Exam Preparation Course, Energy Simulation Mastery Workshop, LEED AP BD+C Mastery Workshop and many others. Also, various courses are under development.

Also, D2O Learning is collaborating with institutes to bridge the gap between industry and academia. Regular Faculty Development Program and technical sessions are organized for students. Apart from this, D2O Learning is associating with corporates to train their teams for climate-related issues, building engineering services etc.


D2O Learning is an Ed-Tech startup which is recognized by DPIIT and Startup India. Check out the profile here – https://bit.ly/3EdRS7h

Also, D2O Learning is an approved startup from iSTART Rajasthan. Apart from this D2O Learning is registered as a MSME in India.

D2O Learning is an Alliance Member of Youth for Sustainability India Alliance. The objective of the alliance is to bring together like-minded youth-oriented organizations focused on SDG 12 – Responsible Consumption and Production and SDG 13 – Climate Action on a common national platform in the form of an Alliance to help India achieve its targets under SDG 12 and 13 with the youth as the accelerator.

Next what?

D2O Learning is planning to expand their team so that they can deliver best to their learners. Also, they’re collaborating with industry leaders so that they can reach out to maximum people. Please stay tuned to their social media pages for regular updates and shower your support & love. Check out more details here – https://linktr.ee/d2olearning

Impact of Indoor Air Pollution in Buildings & need to improve the Indoor Air Quality

indoor air quality

Indoor Air Quality (IAQ) refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants. Understanding and controlling common pollutants indoors can help reduce your risk of indoor health concerns.

Health effects from indoor air pollutants may be experienced soon after exposure or, possibly, years later.

Immediate Effects

Some health effects may show up shortly after a single exposure or repeated exposures to a pollutant. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable. Sometimes the treatment is simply eliminating the person’s exposure to the source of the pollution, if it can be identified. Soon after exposure to some indoor air pollutants, symptoms of some diseases such as asthma may show up, be aggrevated or worsened.

The likelihood of immediate reactions to indoor air pollutants depends on several factors including age and preexisting medical conditions. In some cases, whether a person reacts to a pollutant depends on individual sensitivity, which varies tremendously from person to person. Some people can become sensitized to biological or chemical pollutants after repeated or high level exposures.

Certain immediate effects are similar to those from colds or other viral diseases, so it is often difficult to determine if the symptoms are a result of exposure to indoor air pollution. For this reason, it is important to pay attention to the time and place symptoms occur. If the symptoms fade or go away when a person is away from the area, for example, an effort should be made to identify indoor air sources that may be possible causes. Some effects may be made worse by an inadequate supply of outdoor air coming indoors or from the heating, cooling or humidity conditions prevalent indoors.

Why are people suddenly talking about IAQ?

The reason is indoor air quality in India; especially Delhi has become very poor. Over a million people in India die every year because of indoor air pollution, among st the highest in the world. Unlike many western countries, India does not have any norm for indoor air pollution, which mandates emission norms for home appliances such as refrigerators, air-conditioners and bread toasters and a limit beyond which dirty air inside homes can be bad for one's health. The World Health Organisation (WHO) warned that healthier homes and workplaces could prevent around 1 million deaths, globally, a year, and explicitly singled out indoor air quality as a factor.

Factors Affecting Indoor Air Pollution

Much of the building fabric, its furnishings and equipment, its occupants and their activities produce pollution. In a well functioning building, some of these pollutants will be directly exhausted to the outdoors and some will be removed as outdoor air enters the building and replaces the air inside. The air outside may also contain contaminants which will be brought inside in this process. This air exchange is brought about by the mechanical introduction of outdoor air (outdoor air ventilation rate), the mechanical exhaust of indoor air, and the air exchanged through the building envelope (infiltration and exfiltration).

Pollutants inside can travel through the building as air flows from areas of higher atmospheric pressure to areas of lower atmospheric pressure. Some of these pathways are planned and deliberate so as to draw pollutants away from occupants, but problems arise when unintended flows draw contaminants into occupied areas. In addition, some contaminants may be removed from the air through natural processes, as with the adsorption of chemicals by surfaces or the settling of particles onto surfaces. Removal processes may also be deliberately incorporated into the building systems. Air filtration devices, for example, are commonly incorporated into building ventilation systems.

Managing the Indoor air Quality in Buildings

Remodeling and Renovation

  • Use effective strategies for material selection and installation.
  • Isolate construction activity from occupants.


Establish a protocol for painting and insure that the protocol is followed by both in-house personnel and by contractors.

  • Use low VOC emission, fast drying paints where feasible.
  • Paint during unoccupied hours.
  • Keep lids on paint containers when not in use.
  • Ventilate the building with significant quantities of outside air during and after painting. Insure a complete building flush prior to occupancy.
  • Use more than normal outside air ventilation for some period after occupancy.
  • Avoid spraying, when possible.

Pest Control Integrated Pest Management

  • Use or require the use of Integrated Pest Management by pest control contractors in order to minimize the use of pesticides when managing pests.
  • Control dirt, moisture, clutter, foodstuff, harborage and building penetrations to minimize pests.
  • Use baits and traps rather than pesticide sprays where possible.
  • Avoid periodic pesticide application for “prevention” of pests.
  • Use pesticides only where pests are located.
  • Use pesticide specifically formulated for the targeted pest.
  • Apply pesticides only during unoccupied hours.
  • Ventilate the building with significant quantities of outside air during and after applications.
  • Insure a complete building flush prior to occupancy.
  • Use more than normal outside air ventilation for some period after occupancy.
  • Notify occupants prior to occupation.
  • If applying outside, keep away from air intake.

Establish and Enforce a Smoking Policy

Environmental tobacco smoke (ETS) is a major indoor air contaminant. A smoking policy may take one of two forms:

  • A smoke-free policy which does not allow smoking in any part of the building.
  • A policy that restricts smoking to designated smoking lounges only.

Managing Moisture and Mold

Mold thrives in the presence of water. The secret to controlling mold is to control moisture and relative humidity

  • Keep relative humidity below 60% (50%, if feasible, to control dust mites)

Keep all parts of the building dry that are not designed to be wet

  • Adequately insulate exterior walls or ceilings to avoid condensation on cold surfaces
  • Insulate cold water pipes to avoid sweating
  • Clean spills immediately. Thoroughly clean and dry liquid spills on porous surfaces such as carpet within 24 hours, or discard the material
  • Do not allow standing water in any location
  • Maintain proper water drainage around the perimeter of the building
  • Provide sufficient exhaust in showers or kitchen areas producing steam

Thoroughly clean areas that are designed to be wet

  • Wash floors and walls often where water accumulates (e.g., showers)
  • Clean drain pans often and insure a proper slope to keep water draining
  • Insure proper maintenance and treatment of cooling tower operations

Discard all material with signs of mold growth

  • Discard furniture, carpet, or similar porous material having a persistent musty odor
  • Discard furniture, carpet, or similar porous material that has been wet for more than 24 hours
  • Discard ceiling tiles with visible water stains


The direct impact of indoor air quality will not be readily apparent. It could be long to see a statistical change. But one thing we keep in mind that “People have the right to breathe clean and safe air everywhere”.

Need to minimize the effect of Refrigerant on our Environment


Refrigerant is a compound typically found in either a fluid or gaseous state. It readily absorbs heat from the environment and can provide refrigeration or air conditioning when combined with other components such as compressors and evaporators. If you’ve heard about the R22 refrigerant phase out in favor of R410A refrigerant, you might be especially interested to know more about how refrigerant works and what part it plays in cooling your home.

Refrigeration, including air conditioning, is necessary for life and will continue to expand worldwide. Its impact on environment is huge, even if refrigeration technologies can also be part of solutions for mitigating global warming (new sources of energy, heat pumps…). Many efforts have already been made. However, reduction in CO2 emissions and fluorinated gas emissions are challenges to be addressed on an ongoing basis.

Refrigeration is necessary

Temperature is a magnitude and a key variable in physics, chemistry and biology, and characterizes the state of matter and liquid, solid and gaseous phases, which is vital to all living beings. Thus, thanks to research and development for almost 200 years, refrigeration technologies have progressively led to the providing of goods and the setting up of services vital to mankind:

– Cryogenics: air separation for medical uses (cryosurgery, anaesthesia); petrochemical refining, steel production..; space propulsion fuels, superconductivity for large research instruments, energy (thermonuclear fusion…), medical applications (scanners..), transport and distribution of natural gas or hydrogen, manufacturing of semi-conductors, sequestration of CO2, conservation of species…

– Other health uses: preservation of cells, tissues, organs, embryos… surgery and operating theatres, manufacturing and transport of drugs, vaccines..

– Air conditioning: vehicles, living areas, integrated systems (heating and cooling) with heat pumps, offices and factories, particularly in hot climates but also for technologies (electronic components, computer technology, data centres, biotechnology)…

– Food: manufacturing (texturation, formulation, freeze-drying, fermentation, concentration and separation), storage, transport, commercialization, domestic refrigerators. – Energy and environment applications: cryopreservation of genetic resources, capture and underground storage of CO2, heat pumps, new energies…

– Public works, leisure activities….
Moreover, these applications will continue to expand not only because they are needed for our whole current way of life (e.g. air conditioning for data centres and computer technology…) but also because they are necessary for life itself. Needs in terms of health will dramatically increase:
– according to the FAO1, about 1 billion people are undernourished.
The population is predicted to rise from about 7 billion now to probably a little more than 9 billion people in 2050.2 The global food energy intake per person is increasing too. The global food supply must increase considerably in order to achieve global food security in an equitable manner. The most commonly cited solutions in order to raise production are: i) expansion of the quantity of arable land; ii) higher crop frequency (often through irrigation); and iii) increased crop yields thanks to improved agricultural production technology. The lack of arable land along with limited water resources in many parts of the world is likely to hamper the first two solutions. Therefore, increasing agricultural production alone may prove insufficient to address food security and safety. Greater emphasis on a holistic solution, that encompasses the reduction of post-harvest losses, is an additional sustainable way of increasing food availability. Greater use of refrigeration technologies would ensure better worldwide nutrition, in terms of both quantity and quality. Foodstuffs of animal and plant origin are highly perishable and can host pathogens. Significant causes of food borne diseases and spoilage are bacterial contamination, survival and growth. The use of refrigeration substantially reduces bacterial growth in foods. A study indicates that annually, an estimated 1777 people die every year from known pathogens, out of a total of 5000 deaths from all food – borne diseases in the USA. Analysis of data on causes of foodborne illnesses suggests that over 90% of these illnesses are at least partly associated with poor temperature control. Global food production comprises roughly one third of perishable products requiring preservation. In 2003, out of a total global food production (agricultural products, fish, meat products and dairy products) of 5500 million tonnes, it was estimated that only 400 million tonnes were preserved thanks to refrigeration (chilled or frozen), whilst at least 1800 million tonnes required refrigeration.4 This results in huge losses.

– the population, both in developed and in most developing countries, will become older, more urban and will need better food safety and moreover more health care and products, more air conditioning… and thus more refrigeration equipment.

The huge development which is forecast must be sustainable.

Refrigeration and air conditioning have an important impact on the environment

On the stratospheric ozone layer More than 90% of refrigeration equipment relies on vapour compression using refrigerants and this figure will not change in the near future: other technologies do not generally have enough efficiency. Chlorinated refrigerants (chlorofluorocarbons – CFCs, and to a lesser extent, hydro chlorofluorocarbons – HCFCs) contribute to the depletion of stratospheric ozone if released into the atmosphere due to equipment leaks or if refrigerants are not properly recovered when disposal of the equipment takes place. CFCs and HCFCs are gradually being phased out thanks to the Montreal Protocol. Current measurements of the ozone layer show overall stability and probable recovery to the previous level around 2060. They are often replaced by hydro fluorocarbons (HFCs) which do not deplete the ozone layer but are potent greenhouse gases, as are HCFCs, when released into the atmosphere. CFCs were also greenhouse gases and their global warming potential was much higher. The impact of the Montreal Protocol is thus also positive regarding global warming. However, it is not enough.

On global warming

Refrigeration and air conditioning have an impact on global warming in three ways:
– release into the atmosphere of CFCs, HCFCs and HFCs. The contribution of these refrigerants represents between 1-2% of greenhouse gas emissions. It has been reduced considerably since 1987 (signature of the Montreal Protocol).

Rectifying the effect of Refrigeration  – Refrigerant Reclamation

Through extensive chemical and mechanical processes, used refrigerants are “reclaimed” to meet stringent purity levels and then they re-enter the marketplace for use in consumer or industrial applications.  It is important to note that refrigerant reclamation is different than refrigerant recycling.  The recycling process simply removes contaminants so the refrigerant can be reused in the same equipment or in equipment owned by the same individual; recycled refrigerant is not eligible for resale. During reclamation, extensive filtering, drying, distillation, and chemical processes strip the refrigerant of impurities to ensure the gas meets or exceeds ARI-700 purity standards, which are the same standards required of virgin refrigerant.

How we can reclaim a Refrigerant?

Refrigerant reclamation must be performed by an EPA-certified refrigerant reclaimer.  These reclaimers collect recovered refrigerant, reclaim the gases, and sell them to HVACR professionals.  Many reclaimers purchase these used refrigerants, which can lead to opportunities for profit.

While there are many providers who purchase recovered refrigerant, not all of them are reclaimers.  Ultimately, your refrigerant goes to an EPA-certified reclaimer.  Going straight to the source eliminates the middleman and usually results in higher payouts.  In addition to offering payment, your reclaimer should provide you with paperwork that documents that your recovered refrigerant was handled according to EPA regulations. In India it is developing day by day and now there is a awareness regarding this !

Why Reclamation Matters

As the EPA continues to phase certain refrigerants out of production, it is more important than ever for the industry to embrace reclamation to ensure current and future customer needs are met.  Industry experts predict that the demand for these refrigerants will outpace their supply.  Now is the time to recover and reclaim refrigerant.

AHRI also works with many participants in the industry to ensure that the standards that reclaimers are expected to achieve are well defined and support the highest level of integrity so technicians can be confident in the materials they are using and installing.

Before reclamation can begin the material must be recovered and the EPA defines that as “Recover refrigerant means to remove refrigerant in any condition from an appliance and to store it in an external container without necessarily testing or processing it in any way.”

Some circumstances where the material is being put back into the system it was removed and not being transferred to a new system the material can be recycled and the EPA defines that as “Recycle refrigerant means to extract refrigerant from an appliance and clean refrigerant for reuse without meeting all of the requirements for reclamation. In general, recycled refrigerant is refrigerant that is cleaned using oil separation and single or multiple passes through devices, such as replaceable core filter-driers, which reduce moisture, acidity, and particulate matter. These procedures are usually implemented at the field job site.”

Hence we need to use the Refrigerant Reclamation process to low down the use of gases and also work to bring alternatives for refrigerants.